
UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

Computer and Hand-calculator Programs to Determine

Extension or Contraction of Faulted Marker Planes

P. T. Delaney 1

M. D. Jackson 2

Open-file Report 85-107

This report is preliminary and has not been reviewed
for conformity with U.S. Geological Survey editorial
standards and stratigraphic nomenclature.

1 U.S. Geological Survey 2 Department of Earth and Planetary Sciences
2255 N. Gemini Dr. Johns Hopkins University
Flagstaff, Arizona, 86001 Baltimore, Maryland, 21218

1984

ABSTRACT

Programs are presented which calculate angular relations among fault

attitude, marker-plane attitude and slip direction, and determine the

extension or contraction of the marker by the fault slip. The programs are

written both in FORTRAN and in the reverse-Polish language implemented on

Hewlett-Packard type hand calculators. Examples of program use are presented.

INTRODUCTION

It has been shown by Jackson and Delaney (1985) that certain angular

relations among a marker plane, a fault and the direction of fault slip

provide a measure of the extensional or contractional separation of a marker

plane. These angles are: <|>, the angle between the downward directed normals

to the fault and marker planes; 6, the angle from the intersection of the

fault and marker planes to the slip direction; and w, the angle between the

direction of maximum contraction and the direction of slip. The first two or

the last of these angles can be used to ascertain the extension or contraction

of the marker plane in a direction normal to the line of intersection of the

fault and marker. This paper presents a program written in FORTRAN for

computers, and a program written in a reverse-Polish language for Hewlett-

Packard calculators, to calculate these angular relations.

The method of calculating the angle 6 from the null to the slip

directions used by Jackson and Delaney (1985) can result in divide-by-zero

conditions. This situation is treated by calculating the magnitude of 6 from
-v -v -v -v

the dot-product relation cos |6| = |N»S|, where N and S are the null and slip

vectors, respectively, and the vertical bars denote absolute values of the

enclosed quantity. The sign of the angle 6 is positive if, looking at the

hanging-wall surface of the fault, the angle from the intersection with the

marker to the slip direction is drawn in a clockwise direction. This is

equivalent to finding whether the direction given by the cross product
 > >

relation N x S is in the same direction (positive 6) or opposite direction
 >

(negative 6) as the downwarded directed normal to the fault plane, F.

THE FORTRAN PROGRAM

The FORTRAN program employs the "structured branching options" (see

Meissener and Organick, 1980, p. 480) available in ANSI FORTRAN 77

implementations. The program is thoroughly documented and follows the same

notation as used by Jackson and Delaney (1985). The program (called FAULT)

calls six subroutines: DDDTDC, which converts dip-direction and dip data to

direction-cosine data; TPTDC, which converts trend and plunge data to

direction-cosine data; DCTTP, which converts direction-cosine data to trend

and plunge data; CROSS, which computes the vector cross product; NORM, which

normalizes a vector to unit length; and DOT, which computes the vector dot

product. The program prompts the user for input at the keyboard, and displays

output on a CRT or line printer. It is therefore assumed that the standard

input and output devices are interactive, and denoted by the logical unit

numbers 5 and 6, respectively. Listings are given in Appendix A.

It is assumed that no field measurement is more accurate than 1°; if the

angle $ is within 1° of 90° or the angle 9 is within 1° of 0°, then the fault

slip is identified as "null" it neither extended nor contracted the marker.

In addition, the program calculates the angle between the slip direction and

the fault plane. By definition, this angle should be zero. If it is found to

be greater than 1°, it is used to determine the limits of null faulting.

The example below illustrates the use of the FORTRAN program. User-

supplied entries are underlined.

RUN FAULT

MARKER: Dip Direction and dip (deg) = ?? =
317 20

FAULT: Dip Direction and Dip (deg) = ?? =
180 45

SLICKENLINE: Trend and Plunge (deg) = ?? =
92 2

OFFSET: Hanging Wall UP (U), DOWN (D),
or NO (N) apparent offset = ?? =

D

92. 2. = Trend, Plunge of Hanging Wall SLIP DIRECTION

0. = Eta, ANGLE of the SLIP VECTOR from the FAULT PLANE

61. = Phi, ANGLE between MARKER and FAULT PLANES

101. 11. = Trend, Plunge of NULL DIRECTION

-18. = Theta, ANGLE from NULL to SLIP DIRECTION

99. = Omega, ANGLE from PURE-CONTRACTION DIRECTION to SLIP DIRECTION

EXTENSION FAULT

Another Fault ?? (Y/N)

MARKER PLANE: Dip Direction and Dip = 317. 20.

FAULT: Dip Direction and Dip (deg) = ?? =
180 45

SLICKENLINE: Trend and Plunge (deg) = ?? =
92 2

U

272

101

OFFSET: Hanging Wall UP (U), DOWN (D),
or NO (N) apparent offset = ?? =

-2. = Trend, Plunge of Hanging Wall SLIP DIRECTION

0. = Eta, ANGLE of the SLIP VECTOR from the FAULT PLANE

61. = Phi, ANGLE between MARKER and FAULT PLANES

11. = Trend, Plunge of NULL DIRECTION

18. = Theta, ANGLE from NULL to SLIP DIRECTION

81. = Omega, ANGLE from PURE-CONTRACTION DIRECTION to SLIP DIRECTION

CONTRACTION FAULT

Another Fault ?? (Y/N)
N_

Another Marker?? (Y/N)

MARKER: Dip Direction and dip (deg) = ??
135 70

FAULT: Dip Direction and Dip (deg) = ??
180 45

SLICKENLINE: Trend and Plunge (deg) = ?? =
92 2

OFFSET: Hanging Wall UP (U) , DOWN (D),
or NO (N) apparent offset = ??

92. 2. = Trend, Plunge of Hanging Wall SLIP DIRECTION

0. = Eta, ANGLE of the SLIP VECTOR from the FAULT PLANE

45. = Phi, ANGLE between MARKER and FAULT PLANES

26. -42. = Trend, Plunge of NULL DIRECTION
206. 42. = in Lower Hemisphere

74. = Theta, ANGLE from NULL to SLIP DIRECTION

47. = Omega, ANGLE from PURE-CONTRACTION DIRECTION to SLIP DIRECTION

CONTRACTION FAULT

Another Fault ?? (Y/N)
N_

Another Marker?? (Y/N)
Y_

MARKER: Dip Direction and dip (deg) = ?? =
45 45

FAULT: Dip Direction and Dip (deg) = ?? =
225 45

SLICKENLINE: Trend and Plunge (deg) - ?? =
225 45

OFFSET: Hanging Wall UP (U) , DOWN (D) ,
or NO (N) apparent offset = ?? =

D_

225. 45. = Trend, Plunge of Hanging Wall SLIP DIRECTION

0. = Eta, ANGLE of the SLIP VECTOR from the FAULT PLANE

90. = Phi, ANGLE between MARKER and FAULT PLANES

-45. 0. - Trend, Plunge of NULL DIRECTION
135. 0. = in Lower Hemisphere

HAND-CALCULATOR PROGRAM

The calculation, written for a Hewlett-Packard 15-C calculator, requires

20 storage registers and about 200 lines of instructions. Parameters stored

in the registers are shown in Table 1. A listing is given in Appendix B. For

brevity, only the angle <j> between the downward-directed marker- and fault-

plane normals, and the angle 9 from the null direction to the slip direction,

are calculated. Extension or contraction can be determined from these angles

(Table 2). There are five programs and three subroutines. The first program

uses the dip direction and dip of the marker plane to calculate and store the

direction cosines of the downward-directed normals to that plane. The second

program performs the same task for the fault plane. For faults with hanging-

wall-down displacements, the third program uses the trend and plunge of the

REGISTER #

0

1

2

3

4

5

6

7

8

9

.0

TABLE 1: Contents of storage registers

CONTENTS

i marker

marker m
marker

1fault

mfault

nfault

1slip

mslip

nslip

<j), angle

9, angle

1, m, n are cosines of angles that

superscripted vector makes with

the South, East and Up directions.

between downward-directed marker- and fault-normals

from null to slip direction

.1 - .9 miscellaneous

Table 2: Extension or Contraction from Angles (j) and 0

0° < <f> < 90° <f> = 0° 90° < <f> < 180(

-90° <
0° =
0° <

e <
e
e <

0°

90°

Extend
Null

Contract

Null
Null
Null

Contract
Null

Extend

slip direction to calculate and store the equivalent direction cosines. For

faults with hanging-wall-up displacements, the fourth program performs the

same calculation as the third. The fifth program calculates, displays and

stores the angles (j) and 9.

In the following, the instructions, input keystrokes and the output are

shown for the first and second examples given above. Underlined numbers refer

to the values of the parameters for the particular example.

STEP INSTRUCTIONS

1. Input marker-plane data
a. Marker dip direction

(clockwise degrees from North)

b. Marker dip
(degrees down from horizontal)

c. Run program A

2. Input fault-plane data
a. Fault dip direction

(clockwise degrees from North)

d. Fault dip
(degrees down from horizontal)

c. Run program B

3. Input slip-direction data
a. Slickenline trend

(clockwise degrees from North)

b. Slickenline plunge
(degrees down from horizontal)

c. Sense of offset
Run program C for
hanging wall down displacements

INPUT KEYSTROKE DISPLAY

317

20

180

45

92

ENTER

f A

ENTER

f B

ENTER

f C

STEP INSTRUCTIONS

4. Calculate <t> and
Run program E

INPUT KEYSTROKE

f E

DISPLAY

61 (- 40
-18 (= 9)

For the same marker-plane and fault-plane attitudes, it is not necessary

to re-enter these orientations to enter a different slickenline. Similarily,

it is not necessary to re-enter the attitude of the marker for new fault and

slickenline attitudes. For hanging-wall-up fault slips program D is run

instead of program C:

STEP INSTRUCTIONS

5. Input slip-direction data
a. Slickenline trend

(clockwise degrees from North) 92

b. Slickenline plunge
(degrees down from horizontal) _2_

c. Sense of offset
Run program D for
hanging wall up displacements

6. Calculate <f> and 9
Run program E

INPUT KEYSTROKE

ENTER.

f D

f E

DISPLAY

61 (- 40
18 (= 9)

REFERENCES

Jackson, M.D., and P.T. Delaney, 1985, Extension and contraction of faulted

marker planes: Geology, to be submitted. 16 ms. pages, 5 figures,

2 tables.

Meissner, L.P., and E.I. Organick, 1980, Fortran 77: Featuring Structured

Programming, Addison-Wesley, Reading, Mass., 500 p.

APPENDIX A: FORTRAN PROGRAM

345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2

PROGRAM FAULT

Input: (1) Marker-plane Dip Direction and Dip
(2) Fault-plane Dip Direction and Dip
(3) Slickenline Trend and Plunge
(4) Sense of Offset

Output: (1) Slip Direction of Hanging Wall relative to Footwall
(2) Angle between Slip Direction and Fault Plane (ideally, this

should be equal to zero
(3) Angle from Marker Plane to Fault Plane
(4) Null Direction
(4) Angle from Null to Slip Direction
(5) Angle from direction of maximum contraction to Slip Direction
(6) Determination as to whether the Fault Extends, Contracts,

or has a Null effect on the Marker

IMPLICIT REAL*4 (A-H,0-Z), INTEGER*2 (I-N)
EXTERNAL DOT, CROSS, NORM, DDDTDC, TPTDC, DCTTP
REAL*4 MD, MDC, ND, NDC, MNDC
DIMENSION MD(2), FD(2), SD(2), ND(2), MDC(3), FDC(3), SDC(3),

NDC(3), FPDC(3), MNDC(3), XDC(3)
CHARACTER*! ANS
COMMON /PI0180/ PI180
PI180 = 3.141592654EO/180.0EO

Vectors of Length 2: (1) Dip Direction or Trend in Clockwise
Degrees from North

(last letter of (2) Dip or Plunge in Degrees Down from
name is 'D') Horizontal

Vectors of Length 3: (1) South-pointed Direction Cosine
(2) East-pointed Direction Cosine

(last two letters (3) Up-pointed Direction Cosine
of name are 'DC')

10
12

20
22

OUTER LOOP POINT: Marker-plane Orientation

WRITE (6,12)
FORMAT (/' MARKER: Dip Direction and dip (deg) =??=')
READ (5,*) MD(1), MD(2)
IF (MD(2) .LT. l.OE-1) MD(1) = O.OEO
GOTO 14
WRITE (6,22) MD(1), MD(2)
FORMAT (/' MARKER PLANE: Dip Direction and Dip = ',2(F5.0))

INNER LOOP POINT: Fault Data

14 WRITE (6,24)

24 FORMAT (/' FAULT: Dip Direction and Dip (deg) =??=')
READ (5,*) FD(1), FD(2)
IF (FD(2) .LT. l.OE-1) FD(1) = O.OEO
WRITE (6,26)

26 FORMAT (/' SLICKENLINE: Trend and Plunge (deg) =??=')
READ (5,*) SD(1), SD(2)
WRITE (6,28)

28 FORMAT (/' OFFSET: Hanging Wall UP (U), DOWN (D) =??=')
READ (5,30) ANS

30 FORMAT (Al)
C
C Combine Slickenline and Sense-of-offset to get Slip Direction
C

IF ((ANS .EQ. 'U') .OR. (ANS .EQ. 'u')) THEN
SD(1) = 180.OEO + SD(1)
IF (SD(1) .GE. 360.OEO) SD(1) = SD(1) - 360.OEO
SD(2) = -SD(2)

ENDIF
WRITE (6,32) SD(1), SD(2)

32 FORMAT (//2(F5.0),
' = Trend, Plunge of Hanging Wall SLIP DIRECTION')

C
C Dip Direction and Dip, and Trend and Plunge, To Direction Cosines
C

CALL DDDTDC(MD,MDC)
CALL DDDTDC(FD,FDC)
CALL TPTDC(SD,SDC)

C
C Calculate and write the Angle between Slip Vector and Fault Plane.
C This angle indicates the accuracy of the field measurements. It is
C assumed that no measurement is better than 1 degree, or this angle,
C whichever is greater. Null Faulting arises if the appropriate
C angles are within 1 degree or Phi degrees, whichever is greater, of
C the true Null directions.
C

CALL DOT(SDC,FDC,ETA)
ETA = 90.OEO - ACOS(ABS(ETA))/PI180
IF (ETA .GT. l.OEO) THEN
DLIMIT = ETA

ELSE
DLIMIT = l.OEO

ENDIF
WRITE (6,34) ETA

34 FORMAT (/5X,F5.0,
' - Eta, ANGLE of the SLIP VECTOR from the FAULT PLANE')

C
C Calculate and write Angle from Marker Plane to Fault Plane
C

CALL DOT(MDC,FDC,PHI)
PHI - ACOS(PHI)/PI180
WRITE (6,36) PHI

36 FORMAT (/5X,F5.0,' = Phi, ANGLE between MARKER and FAULT PLANES')
C

10

C Calculate and write Null direction
C

CALL CROSS(FDC,MDC,NDC)
CALL NORM(NDC)
CALL DCTTP(NDC,ND)
WRITE (6,38) ND(1), ND(2)

38 FORMAT (/2(F5.0),' = Trend, Plunge of NULL DIRECTION')
IF (ND(2) .LT. O.OEO) THEN

ND(1) = ND(1) + 180.OEO
ND(2) = -ND(2)
IF (ND(1) .GE. 360.OEO) ND(1) = ND(1) - 360.OEO
WRITE (6,40) ND(1), ND(2)

40 FORMAT (2(F5.0),' = in Lower Hemisphere')
ENDIF

C
C Calculate and write Theta Angle
C The method used below is more cumbersome, but more robust, than that
C described in the paper there s no possibility for divide-by-zero
C errors. The two methods are entirely equivalent.
C

CALL DOT(NDC,SDC,THETA)
THETA = ACOS(ABS(THETA))/PI180
IF (THETA .GT. DLIMIT) THEN

CALL CROSS(NDC,SDC,FPDC)
CALL NORM(FPDC)
CALL DOT(FDC,FPDC,TEST)
IF (TEST .LT. O.OEO) THETA = -THETA

ENDIF
WRITE (6,50) THETA

50 FORMAT (/5X,F5.0,
' = Theta, ANGLE from NULL to SLIP DIRECTION')

C
C Calculate and write Omega angle
C

CALL CROSS(MDC,NDC,XDC)
CALL NORM(XDC)
CALL DOT(SDC,XDC,OMEGA)
OMEGA = AGOS(OMEGA)/PI180
WRITE (6,60) OMEGA

60 FORMAT (/5X,F5.0,' = Omega, ANGLE from PURE-CONTRACTION ',
'DIRECTION to SLIP DIRECTION')

C
C Calculate and write Type of Fault
C
C If Phi < 90 deg, 0 deg < Theta < 90 deg Extension Fault
C 0 deg > Theta > -90 deg Contraction Fault
C If Phi > 90 deg, 0 deg > Theta > 90 deg Extension Fault
C 0 deg < Theta < -90 deg Contraction Fault
C
C If Phi = 90 deg or Theta = 0 deg Null Fault
C

IF (PHI .LT. 90.0EO-DLIMIT) THEN
IF (THETA .LT. -DLIMIT) THEN
WRITE (6,70)

11

ELSEIF (THETA .GT. DLIMIT) THEN
WRITE (6,72)

ELSE
WRITE (6,74)

ENDIF
ELSEIF (PHI .GT. 90.OEO+DLIMIT) THEN

IF (THETA .LT. -DLIMIT) THEN
WRITE (6,72)

ELSEIF (THETA .GT. DLIMIT) THEN
WRITE (6,70)

ELSE
WRITE (6,74)

ENDIF
ELSE
WRITE (6,76)

ENDIF
70 FORMAT (/' EXTENSION FAULT'/)
72 FORMAT (/' CONTRACTION FAULT'/)
74 FORMAT (/' Slip is in Null Direction: NULL FAULT'/)
76 FORMAT (/' Fault is normal to Marker: NULL FAULT'/)

C
WRITE (6,90)

90 FORMAT (/' Another Fault ?? (Y/N) ')
READ (5,30) ANS
IF ((ANS .EQ. '¥') .OR. (ANS .EQ. 'y')) GOTO 20

C
WRITE (6,92)

92 FORMAT (/' Another Marker?? (Y/N) ')
READ (5,30) ANS
IF ((ANS .EQ. 'Y') .OR. (ANS .EQ. 'y')) GOTO 10

C
STOP
END

C 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
C

SUBROUTINE DDDTDC(D,DC)
C
C Napier's rules for spherical triangles to convert from Dip Direction
C and Dip To Direction Cosines for a downward pointed plane normal
C

IMPLICIT REAL*4 (A-H,0-Z), INTEGER*2 (I-N)
DIMENSION D(2), DC(3)
COMMON /PI0180/ PI180

C
DC(1) = SIN(PI180*D(2))*COS(PI180*D(1))
DC(2) = -SIN(PI180*D(2))*SIN(PI180*D(1))
DC(3) = -COS(PI180*D(2))

C
RETURN
END

12

C 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
C

SUBROUTINE TPTDC(D,DC)
C
C Napier's rules for spherical triangles to convert from Trend and
C Plunge To Direction Cosines
C

IMPLICIT REAL*4 (A-H,0-Z), INTEGER*2 (I-N)
DIMENSION D(2), DC(3)
COMMON /PI0180/ PI180

C
DC(1) = -COS(PI180*D(1))*COS(PI180*D(2))
DC(2) = COS(PI180*D(2))*SIN(PI180*D(1))
DC(3) = -SIN(PI180*D(2))

C
RETURN
END

C 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
C

SUBROUTINE DCTTP(DC,D)
C
C Napier's rules for spherical triangles to convert from Direction
C Cosines for a downward pointed plane normal To Trend and Plunge
C

IMPLICIT REAL*4 (A-H,0-Z), INTEGER*2 (I-N)
DIMENSION D(2), DC(3)
COMMON /PI0180/ PI180

C
D(2) = ASIN(-DC(3))/PI180
A = COS(PI180*D(2))
B = ASIN(DC(2)/A)/PI180
IF (B .GT. O.OEO) THEN

D(l) = ACOS(-DC(1)/A)/PI180
ELSE

D(l) = -ACOS(-DC(1)/A)/PI180
ENDIF

C
RETURN
END

13

C 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
C

SUBROUTINE CROSS(A,B,Z)
C
C vector CROSS product
C

IMPLICIT REAL*4 (A-H,0-Z), INTEGER*2 (I-N)
DIMENSION A(3), B(3), Z(3)

C
Z(l) = A(2)*B(3) - B(2)*A(3)
Z(2) = -A(1)*B(3) + B(1)*A(3)
Z(3) = A(1)*B(2) - B(1)*A(2)

C
RETURN
END

C 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
C

SUBROUTINE NORM(Z)
C
C NORMalize a vector to unit length
C

IMPLICIT REAL*4 (A-H,0-Z), INTEGER*2 (I-N)
EXTERNAL DOT
DIMENSION Z(3)

C
CALL DOT(Z,Z,ZMAG)
ZMAG = SQRT(ZMAG)
Z(l) = Z(1)/ZMAG
Z(2) = Z(2)/ZMAG
Z(3) = Z(3)/ZMAG

C
RETURN
END

C 345678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2
C

SUBROUTINE DOT(A,B,Z)
C
C vector DOT product
C

IMPLICIT REAL*4 (A-H,0-Z), INTEGER*2 (I-N)
DIMENSION A(3), B(3)

C
Z = A(1)*B(1) + A(2)*B(2) + A(3)*B(3)

C
RETURN
END

14

APPENDIX B: CALCULATOR PROGRAM

STEP KEY ENTRY KEY CODE COMMENTS

1 f Ibl a 42 21 11 Program A: direction cosines, 1, m and n, of down

ward pointed marker-plane normal, M, calculated

from dip direction and dip.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

gsb 1

sto 2

r*

sto 1

r+

sto 0

g rtn

f Ibl b

gsb 1

sto 5

r+

sto 4

r+

sto 3

g rtn

f Ibl d

chs

x-y

1

8

0

+

x-y

32 1

44 2

33

44 1

33

44 0

43 32

42 21 12

32 1

44 5

33

44 4

33

44 3

43 32

42 21 14

16

34

1

8

0

40

34

Go to subroutine 1

Store nM in register 2

Roll nM off stack

Store m^ in register 1

Roll mM off stack

Store 1M in register 0

Return end of program

Program B: direction cosines, 1, m and n, of down

ward pointed fault-plane normal, F, calculated

from dip direction and dip.

Go to subroutine 1

Store nF in register 5

Roll nF off stack

Store mF in register 4

Roll mF off stack

Store 1F in register 3

Return end of program

Program D: for hang ing-wall -up faults, reverse the

slip direction entered as trend, T, and plunge, P

Change sign : P = -P

Reverse contents of x and y stack registers

1

8

0

T = 180° + T

Reverse contents of x and y stack registers

15

STEP KEY ENTRY KEY CODE COMMENTS

25 f fbl c 42 21 13 Program C: direction cosines, 1, m and n, of slip

direction, S, calculated from trend and plunge

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

gsb

sto

r+

sto

r+

sto

2

8

7

6

g rtn

f Ibl e

rcl

rcl

x

rcl

rcl

x

+

rcl

rcl

x

+

0

3

1

4

2

5

g cos 1

sto 9

f pse

f pse

rcl

sto

rcl

sto

rcl

sto

2

.9

1

.8

0

.7

32

44

33

44

33

44

43

42

45

45

20

45

45

20

40

45

45

20

40

43

44

42

42

45

44

45

44

45

44

2

8

7

6

32

21 15

0

3

1

4

2

5

24

9

31

31

2

.9

1

.8

0

.7

Go to subroutine 2

Store n

Roll nS

Store m

Roll ms

Store 1

Return

Program

Step

Recall

Recall
lM x 1F

Recall

Recall
M F m x m

(1M x 1

Recall

Recall
M F n x n

cos <}> =

<}> = cos

Store <}>

S in register 8

off stack
o

in register 7

off stack

S in register 6

 end of program

E: calculate <}> and 9

1: calculate <}> = cos'^M'F)

1M to stack

1 to stack

M i m to stack
F m to stack

F) + (mM x mF)

n to stack
F n to stack

(1M x 1F) + (mM x mF) + (nM x nF) = M ' F
"^(M'F)

in register 9

pause to display <}>

pause to display cf>

Step

Recall

... and

Recall

... and

Recall

... and

2: calculate N = F x M
M i n to stack . . .

store in register .9

1^ to stack . . .

store in register .8

1^ to stack ...

store in register .7

16

STEP KEY ENTRY KEY CODE COMMENTS

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

rcl 5

rcl 4

rcl 3

gsb 3

sto .3

r+

sto .2

r+

sto .1

rcl 6

x

rcl .2

rcl 7

x

+

rcl .3

rcl 8

x

+

g test 2

chs

g cos*

sto .0

1
-

g test 1

gto 4

rcl .0

g rtn

f Ibl 4

rcl 8

45

45

45

32

44

33

44

33

44

45

20

45

45

20

40

45

45

20

40

43

16

43

44

1

30

43

22

45

43

42

45

5

4

3

3

.3

.2

.1

6

.2

7

.3

8

30 2

24

.0

30 1

4

.0

32

21 4

8

Recall n* to stack

Recall m" to stack

Recall 1F to stack

Go to subroutine 3

Store n in register .3

Roll nN off stack

Store Tfr in register .2

Store Roll mN off stack
N Store 1 in register .1

Step 3: calculate \Q\ = cos^C N'S|)

Recall 1s to stack
1N X 1 R

Recall m to stack

Recall m^ to stack
mN xmS

(1N x 1S) + (mN x mS)

Recall n^ to stack

Recall n^ to stack
nN x nS

cos 9 = (1N x 1 S) + (mN x mS) + (nN x nS) = M'F

If cos 9 < 0

Change sign: cos 6 = -cos 9

I 6| = COS'H |N*S|)

Store |9| in register .0

Step 4: If |9| < 1°, then null fault

1

|9| - 1

If |9| - 1 > 0°

Go to label 4

Recall |9| to the stack

Return end of program

Step 5: find sign of 9 using F'(NxS)

Label 4
c

Recall n to stack . . .

17

STEP KEY ENTRY KEY CODE COMMENTS

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

sto .9

rcl 7

sto .8

rcl 6

sto .7

rcl .3

rcl .2

rcl .1

gsb 3

rcl 5

x

x~y

rcl 4

x

+

x**y

rcl 3

x

+

g test 1

gto 5

rcl .0

chs

sto .0

g rtn

f Ibl 5

rcl .0

g rtn

f Ibl 1

sto .9

sin

x**y

44 .9

45 7

44 .8

45 6

44 .7

45 .3

45 .2

45 .1

32 3

45 5

20

34

45 5

20

40

34

45 3

20

40

43 30 1

22 5

45 .0

16

44 .0

43 32

42 21 5

45 .0

43 32

42 21 1

44 .9

23

34

... and store in register .9
Q

Recall m to stack ...

... and store in register .8
0

Recall 1 to stack ...

...and store in register .7

Recall n to stack

Recall m to stack

Recall 1N to stack

Go to subroutine 3
 n

Recall n to stack
NxS F n x n

Reverse contents of x and y stack registers

Recall mF to stack

m x m

(nNxS x nF) + (mNxS x mF)

Reverse contents of x and y stack registers

Recall 1F to stack
!NxS x 1F

F-(NxS) = (nNxS x nF) + (mNxS x mF) + (!NxS x 1F)

If F-(NxS) > 0

Go to label 5

Recall 9 to stack

Change sign: 9 = -9

Store 9 in register .0

Return end of program

Label 5

Recall 9 to stack

Return end of program

Subroutine 1: calculate direction cosines, 1, m,

and n, from dip direction, DD, and dip, D

Store D in register .9

sin D

Reverse contents of x and y stack registers

18

STEP KEY ENTRY KEY CODE COMMENTS

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

sto .8

cos

X

rcl .9

sin

rcl .8

sin

X

chs

rcl .9

cos

chs

g rtn

f Ibl 2

sto .9

cos

x~y

sto .8

cos

X

chs

rcl .9

cos

rcl .8

sin

X

rcl .9

sin

chs

g rtn

44 .8

24

20

45 .9

23

45 .8

23

20

16

45 .9

24

16

43 32

42 21 2

44 .9

24

34

44 .8

24

20

16

45 .9

24

45 .8

23

20

45 .9

23

16

43 32

Store DD in register .8

cos DD

1 = cos DD x sin D

Recall D to stack

sin D

Recall DD to stack

sin DD

sin D x sin DD

Change sign: m = -sin D x sin DD

Recall D to stack

cos D

Change sign: n = cos D

Return end of subroutine

Subroutine 2: Calculate direction cosines, 1, m and

n, from trend, T, and plunge, P

Store P in register .9

cos P

Reverse contents of x and y stack registers

Store T in register .8

cos T

cos T x cos P

Change sign: 1 = -cos T x cos P

Recall P to stack

cos P

Recall T to stack

sin T

m = sin T x cos P

Recall P to stack

sin P

Change sign: n = -sin P

Return end of subroutine

19

STEP KEY ENTRY KEY CODE COMMENTS

148 f Ibl 3 42 21 3 Subroutine 3: calculate and normalize to unit

length the cross product A x B

Step 1; C = A X B

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

sto

r+

sto

r+

sto

rcl

rcl

x

rcl

rcl

x
-

sto

rcl

rcl

x

rcl

rcl

x

-

sto

rcl

rcl

x

rcl

rcl

x
-

sto

g X2

.4

.5

.6

.5

.9

.8

.6

.1

.7

.6

.4

.9

.2

.4

.8

.7

.5

.3

44

33

44

33

44

45

45

20

45

45

20

30

44

45

45

20

45

45

20

30

44

45

45

20

45

45

20

30

44

43

.4

.5

.6

.5

.9

.8

.6

Store 1A in

Roll 1A off

Store mA in

Roll mA off

Store nA in

register .4

stack

register .5

stack

register .6

Recall mA to stack

Recall nB to
mA x nB

Recall mB to

stack

stack

Recall nA to stack
nA x mB

1C = (nA x mB) - (mA x nB)

.1

.7

.6

.4

.9

.2

.4

.8

.7

.5

.3

11

Store 1C in

Recall 1B to

Recall nA to
nA x 1B

Recall 1A to

Recall nB to
nB x 1A

mC = (nB x 1
r

Store m in

Recall 1A to
 D

Recall m to
mB x 1A

Recall 1B to

Recall mA to
mA x 1B

nc = (mA x 1

Store nc in

Step 2: D
(nC) 2

register .1

stack

stack

stack

stack

Ax (A ,Bx) - (n x 1)

register .2

stack

stack

stack

stack

B) - (mB - 1A)

register .3

= C//C«C

20

STEP KEY ENTRY KEY CODE COMMENTS

179 rcl .2 45 .2 Recall mC to stack

180 g x2 43 11 (mC) 2

181 + 40 (mc) 2 + (nc) 2

182 rcl .1 45 .1 Recall lc to stack

183 g x2 43 11 (1C) 2

184 + 40 C'C = (lc) 2 + (mc) 2 + (nc) 2

185 /~ 11 /t^TT

186 sto .9 44 .9 Store /C^TT in register .9

187 rcl .1 45 .1 Recall 1C to stack

188 rcl .9 45 .9 Recall /C-C to stack

189 * 10 1D = 1C /A^TT

190 rcl .2 45 .2 Recall mc to stack

191 rcl .9 45 .9 Recall /C^TT to stack

192 T 10 mD = mC /A^TT

193 rcl .3 45 .3 Recall nc to stack

194 rcl .9 45 .9 Recall /C~^C~ to stack

195 * 10 nD = nc //C^c"

196 g rtn 43 32 Return end of subroutine

21

